Prove that sin 54°+ cos72°
3/4
Answers
Answered by
2
Answer:
Cos(72) = Cos(90-18)=Sin(18) =
----(a)
Sin(54) = Sin(90-36) = Cos(36) =
----(b)
a^2+b^2
(5+1+2root5/16)+(5+1-2root5/16)
=12/16=3/4
Answered by
2
Cos(72) = Cos(90-18)=Sin(18) = \frac{ \sqrt{5} - 1 }{4}
4
5
−1
----(a)
Sin(54) = Sin(90-36) = Cos(36) = \frac{ \sqrt{5} + 1 }{4}
4
5
+1
----(b)
a^{2} + b^{2}a
2
+b
2
\frac{5 + 1 + 2 \sqrt{5} }{16}
16
5+1+2
5
+ \frac{5 + 1 - 2 \sqrt{5} }{16}
16
5+1−2
5
\frac{12}{16} = \frac{3}{4}
16
12
=
4
3
ur answer mark as brainliest
Similar questions