Math, asked by tarunsarwata76, 2 months ago

Prove that sin 55 °- cos 35°= 0.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

We know that

 \:  \:  \:  \:  \boxed{ \bf{ \: sin(90 \degree \:  - x) = cosx}}

Now,

Consider,

\rm :\longmapsto\:sin55 \degree \:  -  \: cos35\degree

\rm :\longmapsto\: =  \: sin(90\degree -  \: 35\degree)  - cos35\degree

\rm :\longmapsto\: =  \: cos35\degree \:  - \: cos35\degree

\rm :\longmapsto\: =  \: 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \bf{ \: cos(90 \degree \:  - x) = sinx}}

 \boxed{ \bf{ \: tan(90 \degree \:  - x) = cotx}}

 \boxed{ \bf{ \: cot(90 \degree \:  - x) = tanx}}

 \boxed{ \bf{ \: sec(90 \degree \:  - x) = cosecx}}

 \boxed{ \bf{ \: cosec(90 \degree \:  - x) = secx}}

Similar questions