Math, asked by re9rofiapoopmondar2, 1 year ago

Prove that:- sin 6 theta + cos 6 theta = 1-3sin 2 theta.cos 2 theta

Answers

Answered by sai77
4
(sin4+cos4)2=1-3(sin+cos)2tete
1=1-3
1=-2
sin6+cos6≠1-3sin2.cos2
Answered by Anonymous
161

CORRECT QUESTION:-

Prove that

 \sf {sin}^{6} \theta  +  {cos}^{6}  \theta= 1 - 3sin^{2}  \theta.{cos}^{2}  \theta

PROOF:-

⠀⠀⠀⠀

We have LHS

 \implies \sf {sin}^{6} \theta  +  {cos}^{6}  \theta

 \implies  \sf{({sin}^{2}\theta)}^{3}   +  {({cos}^{2}  \theta})^{3}

Using below identity we have:-

 \sf \longrightarrow  {a }^{3}  + {b}^{3}  = (a + b)({a}^{2}  - ab +  {b}^{2} )

⠀⠀⠀⠀

 \implies \sf{ ( {sin}^{2}  \theta +  {cos}^{2}  \theta)} \{(sin^{2}  \theta)^{2}   - sin^{2}  \theta.cos^{2}  \theta +({ cos}^{2} \theta)^{2}  \}

Using below identity we have:-⠀⠀⠀

 \sf  \longrightarrow sin^{2}  \theta + cos^{2}  \theta

⠀⠀⠀⠀

 \implies \sf(1)\{(sin^{2}  \theta)^{2}   - sin^{2}  \theta.cos^{2}  \theta +({ cos}^{2} \theta)^{2}  \}

 \sf \implies \{sin^{4}  \theta + cos^{4}  \theta - sin^{2}  \theta.cos^{ 2}  \theta \}

⠀⠀⠀⠀

Using below algebraic identity we have:-

 \longrightarrow \sf a^{2}  + b ^{2}  = {(a + b)}^{2}  - 2ab

⠀⠀⠀⠀

 \sf \implies \{( {sin}^{2}  \theta + cos^{2} \theta)^{2}  - 2sin^{2}  \theta.cos ^{2}  \theta - sin^{2}  \theta.cos^{2} \theta \}

 \sf \implies(1 - 3sin^{2}  \theta.cos^{2}  \theta)

Therefore LHS=RHS

Hence ,proved

Similar questions