Prove that Sin^6 theta+ Cos^6 theta + 3Cos² theta Sin²theta= 1
Answers
Answered by
9
Hiii friend,
Sin^6 theta + Cos^6 theta + 3 × Cos² theta × Sin² theta = 1
We have,
LHS = Sin^6 theta + Cos^6 theta + 3 × Cos²theta × Sin²theta
We know that,
Sin² theta +Cos² theta = 1
Therefore,
(Sin²theta + Cos²theta)³ = (1)³ = 1
=> (Sin²theta)³ + (Cos²thet)³ + 3 × Sin²theta × Cos²theta (Sin²theta+Cos²theta) = 1
=> Sin^6 theta + Cos^6 theta + 3 × Sin²theta × Cos²theta × 1 = 1
=> Sin^6 theta + Cos^6 theta + 3 × Sin²theta×Cos²theta = 1
Hence,
LHS = RHS...... PROVED...
HOPE IT WILL HELP YOU...... :-)
Sin^6 theta + Cos^6 theta + 3 × Cos² theta × Sin² theta = 1
We have,
LHS = Sin^6 theta + Cos^6 theta + 3 × Cos²theta × Sin²theta
We know that,
Sin² theta +Cos² theta = 1
Therefore,
(Sin²theta + Cos²theta)³ = (1)³ = 1
=> (Sin²theta)³ + (Cos²thet)³ + 3 × Sin²theta × Cos²theta (Sin²theta+Cos²theta) = 1
=> Sin^6 theta + Cos^6 theta + 3 × Sin²theta × Cos²theta × 1 = 1
=> Sin^6 theta + Cos^6 theta + 3 × Sin²theta×Cos²theta = 1
Hence,
LHS = RHS...... PROVED...
HOPE IT WILL HELP YOU...... :-)
preet462:
thanks for helping
Answered by
7
Hi ,
Here I am using A instead of theta.
LHS = sin^6 A + cos^6A+3cos²Asin²A
= ( sin² A)³ + ( cos² A )³+3cos²Asin²A
= ( sin² A+cos² A )³ -
3sin²Acos²A(sin² A+cos²A)+3sin²Acos²A
*********************************
We know the algebraic identity ,
1 ) a³ + b³ = ( a + b )³ - 3ab( a + b )
Here ,
a = sin² A ,
b = cos² A
2 ) sin² A + cos² A = 1
*********************************
= 1 - 3cos²Asin²A + 3cos²Asin²A
= 1
= RHS
Hence proved.
I hope this helps you.
: )
Here I am using A instead of theta.
LHS = sin^6 A + cos^6A+3cos²Asin²A
= ( sin² A)³ + ( cos² A )³+3cos²Asin²A
= ( sin² A+cos² A )³ -
3sin²Acos²A(sin² A+cos²A)+3sin²Acos²A
*********************************
We know the algebraic identity ,
1 ) a³ + b³ = ( a + b )³ - 3ab( a + b )
Here ,
a = sin² A ,
b = cos² A
2 ) sin² A + cos² A = 1
*********************************
= 1 - 3cos²Asin²A + 3cos²Asin²A
= 1
= RHS
Hence proved.
I hope this helps you.
: )
Similar questions