Math, asked by kanu8277, 1 year ago

prove that sin^6 theta + cos^6 theta + 3sin^2xcos^2 theta = 1

Answers

Answered by presentmoment
218

\bold{\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1}

Given:

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1

To prove:

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1

Proof:  

LHS

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta

As we see that \sin ^{6} \theta+\cos ^{6} \theta  is given so converting it into \left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}

Using the value of \left(a^{3}+b^{3}\right) we get the value as \left(a^{3}+b^{3}\right)=a^{3}+b^{3}+3 a b(a+b)

Using the value of \sin ^{2} \theta=a, \cos ^{2} \theta=b

We get the solution as \left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}

Converting the value of \sin ^{2} \theta+\cos ^{2} \theta=1, we get  

\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=(1)^{3}=1=R H S

\bold{\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1}

Therefore LHS=RHS

Hence. Proved.  

Answered by ChAish
119

A pic is attached with the answer. Hope it helps.

Attachments:
Similar questions