Math, asked by mohitbaggu18, 11 months ago

Prove that sin^-6 theta - cot^6 theta = 1+3cot^2 theta sin^-2 theta

Answers

Answered by Nikhil0204
3

ANSWER :-

IN MY PHONE THETA IS NOT AVAILABLE SO I LET IT WITH ALPHA

 {  sin }^{ - 6 }  \alpha  -  {cot}^{6}  \alpha  = 1 + 3 {cot}^{2}  \alpha    \: {sin}^{2}  \alpha  \\

left \: hand \: side \\ 1 \div  {sin}^{6}  \alpha  -  {cos}^{6}  \alpha  \div  {sin}^{6}  \alpha  \\ 1  -  {cos}^{6 }  \alpha  \div  {sin}^{6 }  \alpha  \\

 {sin}^{6}  \alpha  + 3 {sin}^{2} \alpha   {cos}^{2}  \alpha ( {sin }^{2}  \alpha  +  {cos}^{2}  \alpha ) \div  {sin}^{6}  \alpha  \\  {sin}^{4}  \alpha ( {sin }^{2}  \alpha  + 3 {cos}^{2}  \alpha  \:  {sin}^{2}  \alpha  + 3 {cos}^{4}  \div  {sin}^{6}  \\  {sin}^{2}  \alpha  (1 + 3 {cos \alpha }^{2} ) + 3 {cos}^{4 }  \alpha  \div  {sin \alpha }^{2}

Similar questions