Math, asked by sumithans1023, 8 months ago

prove that
sin^6 thita + cos^6 thita + 3 sin^2 ×cos^2 = 1​

Answers

Answered by akanshaagrwal23
5

Step-by-step explanation:

sin

6

θ+cos

6

θ+3sin

2

θcos

2

θ=1

Given:

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1sin

6

θ+cos

6

θ+3sin

2

θcos

2

θ=1

To prove:

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1sin

6

θ+cos

6

θ+3sin

2

θcos

2

θ=1

Proof:

LHS

\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \thetasin

6

θ+cos

6

θ+3sin

2

θcos

2

θ

As we see that \sin ^{6} \theta+\cos ^{6} \thetasin

6

θ+cos

6

θ is given so converting it into \left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}(sin

2

θ)

3

+(cos

2

θ)

3

Using the value of \left(a^{3}+b^{3}\right)(a

3

+b

3

) we get the value as \left(a^{3}+b^{3}\right)=a^{3}+b^{3}+3 a b(a+b)(a

3

+b

3

)=a

3

+b

3

+3ab(a+b)

Using the value of \sin ^{2} \theta=a, \cos ^{2} \theta=bsin

2

θ=a,cos

2

θ=b

We get the solution as \left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}(sin

2

θ+cos

2

θ)

3

Converting the value of \sin ^{2} \theta+\cos ^{2} \theta=1sin

2

θ+cos

2

θ=1 , we get

\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}=(1)^{3}=1=R H S(sin

2

θ+cos

2

θ)

3

=(1)

3

=1=RHS

\bold{\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta=1}sin

6

θ+cos

6

θ+3sin

2

θcos

2

θ=1

Therefore LHS=RHSLHS=RHS

Hence. Proved.

Attachments:
Similar questions