Math, asked by joashanbtremor, 2 months ago

prove that
sin 60 + sin 40 - sin 20 = 4 cos sin 20 cos 30​

Answers

Answered by FaiqHashmi880
3

Answer:

Consider L.H.S

sin 20 × sin 40 × sin60 × sin80

Step-by-step explanation:

sin 0° = √(0/4) = 0

sin 30° = √(1/4) = ½

sin 45° = √(2/4) = 1/√2

sin 60° = √3/4 = √3/2

sin 90° = √(4/4) = 1

L.H.S = sin60 [ sin20 × sin40 × sin80 ]

L.H.S = √3/2[ sin20 × sin(60 – 20) × sin(60 + 20)]

L.H.S = √3/2[sin 3(20)/4]

L.H.S = √3/2[sin 60/4]

L.H.S = √3/2[√3/2 × 4]

L.H.S = √3/2 × √3/8

L.H.S = 3/16

∴ L.H.S = R.H.S

Similar questions