Math, asked by pokemonwatchouts123, 3 days ago

Prove that Sin 60° cos 30° – cos 60° sin 30° = sin 30

Answers

Answered by bhardwaj82vns
2

Answer:

Sin 60° cos 30° – cos 60° sin 30° = sin 30

Attachments:
Answered by XxsoumyaxX
2

\large\underline{\sf{Solution}}

\mathrm{sin60° \:cos 30° - cos 60° \: sin 30°=sin30°}

\mathrm{=\large (\frac{ \sqrt{3} }{2}) \times ( \frac{ \sqrt{3} }{2}) - ( \frac{1}{2} ) \times ( \frac{1}{2}  ) =  \frac{1}{2}  }

\mathrm{= >  \large\frac{3}{4} -  \frac{1}{4}   =  \frac{1}{2} }

\mathrm{ = > \large \frac{3 - 1}{4} =  \frac{1}{2}   }

\mathrm{ =  > \large \frac{2}{4} =  \frac{1}{2}  }

\mathrm{\therefore \frac{1} {2} =\frac{1} {2}}

LHS = RHS

Hence, proved.

Similar questions