Math, asked by OishiBanerjee, 1 year ago

Prove that
sin^6A+cos^6A = 1- 3sin^2Acos^2A

Answers

Answered by ansss
112
sin^6A+cos^6A
(sin²A)³+(cos²A)³ ............[a^6=(a²)³]
(sin²A+cos²A)³-3sin²Acos²A.........[(a+b)³=a³+b³+3ab]
1³-3sin²Acos²A
1-3sin²Acos²A

!!hence proved!!


 


ansss: hope it helps
MADHANSCTS: u made some mistakes in the answer.
MADHANSCTS: check the formula.
ansss: its absolutely correct
ansss: (a+b)^3=a^3+b^3+3ab(a+b) (a+b)^3-3ab(a+b)=a^3+b^3
Answered by MADHANSCTS
89
sin⁶A+cos⁶A = (sin²A)³ + (cos²A)³
                       = ( sin²A+cos²A)³ - 3(sin²A.cos²A)(sin²A+cos²A)
                       = 1 - 3(sin²A.cos²A)(1)
                       = 1 - 3.sin²A.cos²A
Similar questions