prove that sin^6alpha + cos^6alpha= 3sin⁴alpha + 3cos²alpha - 2
Answers
Answer:
prove that, \sin^6 \alpha+\cos^6\alpha=1-3\sin^2\alpha+3\sin^4\alpha.sin
6
α+cos
6
α=1−3sin
2
α+3sin
4
α.
L.H.S. =\sin^6 \alpha+\cos^6\alpha=sin
6
α+cos
6
α
=(\sin^2 \alpha)^3+(\cos^2\alpha)^3=(sin
2
α)
3
+(cos
2
α)
3
Using the algebraic identity,
(a+b)^{3} =a^{3} +b^{3}+3ab(a+b)(a+b)
3
=a
3
+b
3
+3ab(a+b)
⇒ a^{3} +b^{3}=(a+b)^{3}-3ab(a+b)a
3
+b
3
=(a+b)
3
−3ab(a+b)
=(\sin^2 \alpha+\cos^2\alpha)^3-3\sin^2 \alpha\cos^2\alpha(\sin^2 \alpha+\cos^2\alpha)=(sin
2
α+cos
2
α)
3
−3sin
2
αcos
2
α(sin
2
α+cos
2
α)
=(1)^3-3\sin^2 \alpha\cos^2\alpha(1)=(1)
3
−3sin
2
αcos
2
α(1)
Using the trigonometric identity,
\sin^2 A+\cos^2A=1sin
2
A+cos
2
A=1
=1-3\sin^2 \alpha\cos^2\alpha=1−3sin
2
αcos
2
α
=1-3\sin^2 \alpha(1-\sin^2 \alpha)=1−3sin
2
α(1−sin
2
α)
=1-3\sin^2 \alpha+3\sin^4 \alpha=1−3sin
2
α+3sin
4
α
= R.H.S., proved.
Thus, \sin^6 \alpha+\cos^6\alpha=1-3\sin^2\alpha+3\sin^4\alpha,sin
6
α+cos
6
α=1−3sin
2
α+3sin
4
α, proved.