Math, asked by chamanlal667778, 4 months ago

prove that sin ^6theta + cos^6 theta)= 1-3sin^2 Theta cos^2 theta​

Answers

Answered by suhail2070
0

Step-by-step explanation:

 { \sin( \alpha ) }^{6}  +  { \cos(\alpha ) }^{6}  = {( {( \sin( \alpha ) )}^{2} )}^{3}  +  {( { \cos( \alpha ) }^{2}) }^{3}  \\  \\  =(  ({ \sin( \alpha ) }^{2} +   { \cos( \alpha ) }^{2})( ({ { \sin( \alpha ) }^{2}) }^{2} +  { {( \cos( \alpha ) }^{2}) }^{2} -  { \sin( \alpha ) }^{2} { \cos( \alpha ) }^{2}    )  \\  \\  =  { \sin( \alpha ) }^{4}  +  { \cos( \alpha ) }^{4}  -  { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  \\  \\  = 1 - 2 { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  \\  \\  = 1 - 3 { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2}  \\  \\ hence \: proved

Similar questions