Math, asked by sreyaatheress, 2 months ago

prove that sin 6x + sin 2x= 2sin 4x cos 2x​

Answers

Answered by Anonymous
18

\malteseGiven to prove that :-

sin6x + sin2x = 2sin4x\: cos2x

\malteseSOLUTION :-

Take L.H.S that is sin6x +sin2x

It is in form of

sinC + sinD = 2sin \bigg(\dfrac{C+D}{2} \bigg)cos \bigg(\dfrac{C-D}{2} \bigg)

So,

sin6x +sin2x = 2 sin \bigg(\dfrac{6x+2x}{2} \bigg) cos\bigg(\dfrac{6x-2x}{2} \bigg)

sin6x+sin2x = 2sin\bigg(\dfrac{8x}{2} \bigg)cos\bigg(\dfrac{4x}{2} \bigg)

sin6x + sin2x = 2sin4x cos2x

{\boxed{sin6x+sin2x = 2sin4x cos2x}}

\maltese{\boxed{Hence\: \: proved!!}}

\malteseKnow more formulae :-

sinC- sinD = 2sin\bigg(\dfrac{C-D}{2} \bigg)cos\bigg(\dfrac{C+D}{2} \bigg)

cosC +cosD = 2cos\bigg(\dfrac{C+D}{2} \bigg)cos\bigg(\dfrac{C-D}{2} \bigg)

cosC- cosD = -2sin\bigg(\dfrac{C+D}{2} \bigg)sin\bigg(\dfrac{C-D}{2} \bigg)

sin(A+B)= sinAcosB + sinBcosA

sin(A-B) = sinAcosB- sinBcosA

cos(A+B) = cosAcosB - sinAsinB

cos(A-B) = cosAcosB + sinAsinB

tan(A+B) = \dfrac{tanA+tanB}{1-tanAtanB}

tan(A-B) = \dfrac{tanA-tanB}{1+tanAtanB}

cot(A+B) = \dfrac{cotB cotA -1}{cotB + cotA}

 cot(A-B) = \dfrac{cotB cotA + 1}{cotB-cotA}

Similar questions