Prove
that Sin 7x + Sin 5x + Sin9x + Sin3x÷Cos 7x + Cos 5x + cos9x+cos 3x= Tan6x
Answers
Answered by
1
Answer:
Answer
LHS=
(cos7x+cos5x)+(cos9x+cos3x)
(sin7x+sin5x)+(sin9x+sin3x)
=
2cos(
2
7x+5x
)cos(
2
7x−5x
)+2cos(
2
9x+3x
)cos(
2
9x−3x
)
2sin(
2
7x+5x
)cos(
2
7x−5x
)+2sin(
2
9x+3x
)cos(
2
9x−3x
)
=
cos6xcosx+cos6xcos3x
sin6xcosx+sin6xcos3x
=tan6x=RHS
Hence proved
Similar questions