Prove that sin^8 A -cos^8 A =(sin^2- cos^2 A)(1-2 sin^2 A cos^2 A
Answers
Answered by
145
Hey there !
starting with LHS :
=> sin⁸A - cos⁸A
we know that :-
sin⁸A = (sin⁴A)²
cos⁸A = (cos⁴A)²
This can be written as :-
=> (sin⁴A)² - (cos⁴A)²
Now this is in the form of an identity : a² - b² = (a+b) ( a - b)
=> (sin⁴A + cos⁴A) ( sin⁴A - cos⁴A)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
=> (sin²A)² + (cos²A)² (( sin⁴A - cos⁴A))
(sin²A)² + (cos²A)² can be in the identity : a² + b² = (a+b)² - 2ab
[ (sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2sin²A cos²A ]
=> [(sin²A + cos²A)² - 2sin²A cos²A ] (( sin⁴A - cos⁴A))
Now ,
sin⁴A - cos⁴A
this can be written in the form of the identity a² - b² = (a+b) (a -b)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
sin⁴A - cos⁴A = (sin²A + cos²A) (sin²A - cos²A)
=> => [(sin²A + cos²A)² - 2sin²A cos²A ] (sin²A + cos²A) (sin²A - cos²A)
we know that ,
sin²A + cos²A = 1 [ by identity ]
hence,
=> [ (1)² - 2sin²A cos²A ] (1) ×(sin²A - cos²A)
=> ( 1 - 2sin²A cos²A ) (sin²A - cos²A)
=>RHS
starting with LHS :
=> sin⁸A - cos⁸A
we know that :-
sin⁸A = (sin⁴A)²
cos⁸A = (cos⁴A)²
This can be written as :-
=> (sin⁴A)² - (cos⁴A)²
Now this is in the form of an identity : a² - b² = (a+b) ( a - b)
=> (sin⁴A + cos⁴A) ( sin⁴A - cos⁴A)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
=> (sin²A)² + (cos²A)² (( sin⁴A - cos⁴A))
(sin²A)² + (cos²A)² can be in the identity : a² + b² = (a+b)² - 2ab
[ (sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2sin²A cos²A ]
=> [(sin²A + cos²A)² - 2sin²A cos²A ] (( sin⁴A - cos⁴A))
Now ,
sin⁴A - cos⁴A
this can be written in the form of the identity a² - b² = (a+b) (a -b)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
sin⁴A - cos⁴A = (sin²A + cos²A) (sin²A - cos²A)
=> => [(sin²A + cos²A)² - 2sin²A cos²A ] (sin²A + cos²A) (sin²A - cos²A)
we know that ,
sin²A + cos²A = 1 [ by identity ]
hence,
=> [ (1)² - 2sin²A cos²A ] (1) ×(sin²A - cos²A)
=> ( 1 - 2sin²A cos²A ) (sin²A - cos²A)
=>RHS
Answered by
66
this can be solved by using identities
Attachments:
Similar questions