Social Sciences, asked by m6ag3hosaraild, 1 year ago

Prove that sin^8 A -cos^8 A =(sin^2- cos^2 A)(1-2 sin^2 A cos^2 A

Answers

Answered by Anonymous
145
Hey there !

starting with LHS :
=> sin⁸A - cos⁸A

we know that :-
sin⁸A = (sin⁴A)² 
cos⁸A = (cos⁴A)²

This can be written as :-

 => (sin⁴A)² - (cos⁴A)²

Now this is in the form of an identity : a² - b² = (a+b) ( a - b)

 => (sin⁴A + cos⁴A) ( sin⁴A - cos⁴A)

sin⁴A  = (sin²A)²
cos⁴A = (cos²A)²

=>  (sin²A)² + (cos²A)² (( sin⁴A - cos⁴A))


 (sin²A)² + (cos²A)² can be in the identity : a² + b² = (a+b)² - 2ab

  [    (sin²A)² + (cos²A)² =  (sin²A + cos²A)² - 2sin²A cos²A ]



 => [(sin²A + cos²A)² - 2sin²A cos²A ] (( sin⁴A - cos⁴A))


Now ,
sin⁴A - cos⁴A 
this can be written in the form of the identity a² - b² = (a+b) (a -b)

sin⁴A  = (sin²A)²
cos⁴A = (cos²A)²

 sin⁴A - cos⁴A = (sin²A + cos²A) (sin²A - cos²A)

=> => [(sin²A + cos²A)² - 2sin²A cos²A ] (sin²A + cos²A) (sin²A - cos²A)

we know that ,
sin²A + cos²A = 1              [ by identity ]

hence,

=> [ (1)² - 2sin²A cos²A ] (1) ×(sin²A - cos²A)

=> ( 1 - 2sin²A cos²A ) (sin²A - cos²A)

=>RHS



Answered by vartikaRawat
66
this can be solved by using identities
Attachments:
Similar questions