Prove that:
sin^8 theta- cos^8 theta = (1-2 cos^2 theta)(1-2 sin^2 theta*cos^2 theta)
Answers
Answered by
4
Answer:
Step-by-step explanation:
sin⁸θ-cos⁸θ
=(sin⁴θ)²-(cos⁴θ)²
=(sin⁴θ+cos⁴θ)(sin⁴θ-cos⁴θ)
={(sin²θ)²+(cos²θ)²}{(sin²θ)²-(cos²θ)²}
={(sin²θ+cos²θ)²-2sin²θcos²θ}{(sin²θ+cos²θ)(sin²θ-cos²θ)}
={(1)²-2sin²θcos²θ}{(1)(sin²θ-cos²θ)} [∵, sin²θ+cos²θ=1]
=(sin²θ-cos²θ)(1-2sin²θcos²θ)
Similar questions