prove that
sin ^8 x- cos ^8x = (sin^2 x - cos^2 x) (1 - 2 sin^2x.cos^2x)
Answers
Answered by
2
Step-by-step explanation:
L.H.S
sin^8x − cos^8x
⇒(sin⁴x)² − (cos⁴x)²
=>(sin⁴x − cos⁴x)(sin⁴x+cos⁴x) ∵(a²−b²)=(a−b(a+b)
=> [(sin²x)²−(cos²x)²][(sin²x+cos²x)²−2sin² x cos²x) ∵(a+b)²−2ab=a²+b²
=> [(sin²x−cos²x)(sin²x+cos²x)][(sin²x+cos²x)²−2sin²xcos²x)]
=> [(sin²x−cos²x)(1))((1)²−2sin²xcos²x) ∵sin²x+cos²x=1
= (sin²x−cos²x)(1−2sin²xcos²x)
R.H.S
Hence, proved.
Hope it helps you..
Please mark it as Brainliest
Answered by
14
Answer:
Please don't post useless answers....
Similar questions