prove that
sin^8A-cos^8A=(1-2cos^2A)(1-2sin^2A×cos^2A
Answers
Answered by
3
Answer:
Here is your answer ✌!
LHS,
sin^8a - cos^8a
( sin^4a )² - ( cos^4a )²
(sin^4a - cos^4a) (sin^4a + cos^4a)
[ (sin²a)² - (cos²a)² ] [ ( sin²a + cos²a) -
2sin²a cos²a ]
(sin²a + cos²a)(sin²a - cos²a) [ 1 - 2sin²a
cos²a ]
(sin²a - cos²a) ( 1 - 2sin²a cos²a )
we know , cos 2a = cos²a - sin²a
- cos 2a ( 1 - 2sin²a cos ²a )
And also, cos 2a = 2cos²a - 1
- ( 2cos²a - 1 ) ( 1 - 2sin²a cos²a )
( 1 - 2cos²a ) ( 1 - 2sin²a cos²a )
Hence proved
Hope it's help you ✌!
Similar questions