Prove that sin^8a-cos^8a=(1-2cos^2a)(1-2sin^2acos^2a)
Answers
Answered by
24
Answer:
Hence Proved
Step-by-step explanation:
Answered by
9
Here is your answer ✌!
LHS,
sin^8a - cos^8a
( sin^4a )² - ( cos^4a )²
(sin^4a - cos^4a) (sin^4a + cos^4a)
[ (sin²a)² - (cos²a)² ] [ ( sin²a + cos²a) -
2sin²a cos²a ]
(sin²a + cos²a)(sin²a - cos²a) [ 1 - 2sin²a
cos²a ]
(sin²a - cos²a) ( 1 - 2sin²a cos²a )
we know , cos 2a = cos²a - sin²a
- cos 2a ( 1 - 2sin²a cos ²a )
And also, cos 2a = 2cos²a - 1
- ( 2cos²a - 1 ) ( 1 - 2sin²a cos²a )
( 1 - 2cos²a ) ( 1 - 2sin²a cos²a )
Hence proved
Hope it's help you ✌!
Similar questions