Prove that (sin^8A-cos^8A)=(2sin^2A–1)(1-2sin^2Acos^2A)
Answers
Answered by
15
To prove :
sin⁸A - cos⁸A
= (2 sin²A - 1)(1 - 2 sin²A cos²A)
Proof :
Now, sin⁸A - cos⁸A
= (sin⁴A - cos⁴A) (sin⁴A + cos⁴A)
= (sin²A + cos²A) (sin²A - cos²A)
{(sin²A + cos²A)² - 2 sin²A cos²A}
= {sin²A - (1 - sin²A)} (1 - 2 sin²A cos²A)
= (sin²A - 1 + sin²A) (1 - 2 sin²A cos²A)
= (2 sin²A - 1) (1 - 2 sin²A cos²A)
⇒ sin⁸A - cos⁸A
= (2 sin²A - 1) (1 - 2 sin²A cos²A)
Hence, proved.
Trigonometric Rules :
• sin²A + cos²A = 1
• sec²A - tan²A = 1
• cosec²A - cot²A = 1
Swarup1998:
:-)
Answered by
1
Answer:
hope it will be helpful
Step-by-step explanation:
mark me brand list
Attachments:
Similar questions
Accountancy,
6 months ago
Math,
6 months ago
Biology,
6 months ago
Math,
11 months ago
Social Sciences,
11 months ago
Math,
1 year ago
Math,
1 year ago