Prove that sin 8theta cos 8 theta 1 2cos 2 theta-cos^8 theta=(sin^theta-cos^2 theta)(1-2 sin^2theta cos^2theta)
Answers
Answered by
4
Sin⁸θ-cos⁸θ
=(sin⁴θ)²-(cos⁴θ)²
=(sin⁴θ+cos⁴θ)(sin⁴θ-cos⁴θ)
={(sin²θ)²+(cos²θ)²}{(sin²θ)²-(cos²θ)²}
={(sin²θ+cos²θ)²-2sin²θcos²θ}{(sin²θ+cos²θ)(sin²θ-cos²θ)}
={(1)²-2sin²θcos²θ}{(1)(sin²θ-cos²θ)} [∵, sin²θ+cos²θ=1]
=(sin²θ-cos²θ)(1-2sin²θcos²θ) (Proved)
Similar questions
Math,
7 months ago
Social Sciences,
1 year ago
Environmental Sciences,
1 year ago
History,
1 year ago
History,
1 year ago