Math, asked by Happy2309, 1 year ago

Prove that sin^8x-cos^8x=(1-2cos^2x)(1-2 sin^2x cos^2x)

Answers

Answered by NeelamG
3

i hope it will help u..

Attachments:
Answered by Anonymous
99

Question:-

\sin^8x-\cos^8x=\left(sin^2x-\cos^2x\right)\:\left(1-2\sin^2x\cos^2x\right)

Solution :-

Take LHS =

=\left(\sin^8x-\cos^8x\right)= {\left(\sin^4x\right)}^2</p><p> - {\left(\cos^4x\right)}^2

=\left(sin^4x-\cos^4x\right) \left(sin^4x+ \cos^4x\right)

= \left(sin^2x-\cos^2x\right)  \left(sin^2x+ \cos^2x\right)\left(sin^4x+ \cos^4x\right)

=\left(sin^2x-\cos^2x\right)\left(sin^4x+ \cos^4x\right)

=\left(sin^2x-\cos^2x\right) \left(\sin^4x +\cos^4x +2\sin^2x\cos^x-2\sin^2x\cos^2x\right)

= \left(sin^2x-\cos^2x\right) \left[{\left(\sin^2x + \cos^2x\right)}^2-2\sin^2x\cos^2x\right]

 = \left(sin^2x-\cos^2x\right)\:\left(1-2\sin^2x\cos^2x\right)=RHS

Hence proved

More to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² -2ab + b²

a² - b² = (a + b) (a - b)

Similar questions