prove that: sin(90^-A).cos(90^-A)= cot A/1+cot Square A
Answers
Answered by
3
Step-by-step explanation:
Given :-
Sin (90°-A) Cos (90°-A)
To find :-
Prove that
Sin (90°-A) Cos (90°-A)=CotA/(1+Cot²A)
Solution :-
On taking LHS :
Sin (90°-A) Cos (90°-A)
We know that
Sin (90°-A) = Cos A
Cos (90°-A) = Sin A
Sin (90°-A) Cos (90°-A) = Cos A Sin A ------------(1)
On taking RHS
CotA/(1+Cot²A)
We know that
Cosec² A - Cot² A = 1
=> Cosec² A = 1 + Cot² A
Now
CotA/(1+Cot²A)
=> Cot A / Cosec² A
=> CotA × Sin² A
Since , Cosec A = 1/Sin A
=> (Cos A / Sin A ) × Sin² A
Since , CotA = Cos A / Sin A
=> (Cos A × Sin² A )/Sin A
=> Cos A . Sin A ----------------(2)
From (1) &(2)
LHS = RHS
Sin (90°-A) Cos (90°-A)=CotA/(1+Cot²A)
Hence, Proved.
Used formulae:-
→ Sin (90°-A) = Cos A
→ Cos (90°-A) = Sin A
→ Cosec² A - Cot² A = 1
→ Cosec A = 1/Sin A
→ CotA = Cos A / Sin A
Similar questions