Prove that sin(90-a)/cosec(90-a)- cot(90-a)=1+sina
Answers
Answered by
3
cos(90−A)=sin(A);
sin(90−A)=cos(A);
tan(90−A)=cot(A)
cot(A) =
_______________________________
LHS
=
_______________________________
=
_______________________________
=
sin(A) sin(A) = sin²(A)
RHS
sin²(A)
LHS = RHS
Hence Proved☑
Answered by
0
Answer:
cos(90−A)=sin(A);
sin(90−A)=cos(A);
tan(90−A)=cot(A)
cot(A) = \{cos(A)}{sin(A)}
sin(A)
cos(A)
_______________________________
LHS
\frac{cos(90-A)sin(90-a)}{tan(90-a)}
tan(90−a)
cos(90−A)sin(90−a)
=
\frac{sin(A)cos(A)}{cot(A)}
cot(A)
sin(A)cos(A)
_______________________________
\frac{sin(A)cos(A)}{cot(A)}
cot(A)
sin(A)cos(A)
=
\frac{sin(A)cos(A)sin(A)}{cos(A)}
cos(A)
sin(A)cos(A)sin(A)
_______________________________
\frac{sin(A)cos(A)sin(A)}{cos(A)}
cos(A)
sin(A)cos(A)sin(A)
=
sin(A) sin(A) = sin²(A)
RHS
sin²(A)
LHS = RHS
Hence Proved☑
Similar questions