Math, asked by oracleislive2005, 4 months ago

Prove that sin(90-a)/cosec(90-a)- cot(90-a)=1+sina

Answers

Answered by DisneyPrincess29
3

cos(90−A)=sin(A);

sin(90−A)=cos(A);

tan(90−A)=cot(A)

cot(A) = \frac{cos(A)}{sin(A)}

_______________________________

LHS

\frac{cos(90-A)sin(90-a)}{tan(90-a)}

=

\frac{sin(A)cos(A)}{cot(A)}

_______________________________

\frac{sin(A)cos(A)}{cot(A)}

=

\frac{sin(A)cos(A)sin(A)}{cos(A)}

_______________________________

\frac{sin(A)cos(A)sin(A)}{cos(A)}

=

sin(A) sin(A) = sin²(A)

RHS

sin²(A)

LHS = RHS

Hence Proved☑

Answered by rpremapreman
0

Answer:

cos(90−A)=sin(A);

sin(90−A)=cos(A);

tan(90−A)=cot(A)

cot(A) = \{cos(A)}{sin(A)}

sin(A)

cos(A)

_______________________________

LHS

\frac{cos(90-A)sin(90-a)}{tan(90-a)}

tan(90−a)

cos(90−A)sin(90−a)

=

\frac{sin(A)cos(A)}{cot(A)}

cot(A)

sin(A)cos(A)

_______________________________

\frac{sin(A)cos(A)}{cot(A)}

cot(A)

sin(A)cos(A)

=

\frac{sin(A)cos(A)sin(A)}{cos(A)}

cos(A)

sin(A)cos(A)sin(A)

_______________________________

\frac{sin(A)cos(A)sin(A)}{cos(A)}

cos(A)

sin(A)cos(A)sin(A)

=

sin(A) sin(A) = sin²(A)

RHS

sin²(A)

LHS = RHS

Hence Proved☑

Similar questions