prove that Sin(90° -A) = COSA
Answers
Answered by
2
We already know that,
Sin(P-Q) = SinP CosQ - SinQ CosP
so, using this trignometric identity we can write,
Sin(90°-A) = Sin90° CosA - SinA Cos90° ____1
we know, value of Sin90° = 1
Value of cos90° = 0
Putting the values in equation (1) We get :-
Sin(90°-A) = 1 CosA - SinA×0
Sin(90°-A) = CosA - 0
Sin(90°-A) = CosA
Hence proved that Sin(90°-A) = CosA
Hope it helps.
Similar questions