prove that sin a/(1-cos a)=cosec a+cot a
Answers
Answered by
0
Answer:
Q→ Evaluate the following limit.
Step-by-step explanation:
Q→ Evaluate the following limit.
Answered by
12
Answer:
Taking LHS
- sina/(1-cos a)= sin a / (1-cos a) × ( 1+ cos a)/ ( 1+cos a) [ by rationalizing the denominator ( 1- cos a]
- = sina+ (sina × cos a) / ( 1)^2- (cos a)^2 [ by (a+b) (a-b)=a^2 - b^2]
- sin a + ( sina × cosa) / 1 - cos ^2 a
- sina + ( sina× cosa) / sin^2a [ sin^2a = 1 - cos ^2 a]
- sina / sin ^2a + sina cos a/ sin^2a
- 1/sin a + cos a / sin a
- cosec a + cot a [ 1/ sin a = cosec a & cos a/ sin a= cot a
- Hence LHS = RHS
PROVED
Hope it will help you.
Similar questions