Math, asked by mahii1410, 5 months ago

prove that sin a/(1-cos a)=cosec a+cot a

Answers

Answered by unkownss
0

Answer:

Q→ Evaluate the following limit.

lim \: x→0 \binom{\sqrt[3]{1 + \times - \sqrt{1 + \times } } }{ \times }

Step-by-step explanation:

Q→ Evaluate the following limit.

lim \: x→0 \binom{\sqrt[3]{1 + \times - \sqrt{1 + \times } } }{ \times }

Answered by geetanjalidhami20897
12

Answer:

Taking LHS

  • sina/(1-cos a)= sin a / (1-cos a) × ( 1+ cos a)/ ( 1+cos a) [ by rationalizing the denominator ( 1- cos a]
  • = sina+ (sina × cos a) / ( 1)^2- (cos a)^2 [ by (a+b) (a-b)=a^2 - b^2]
  • sin a + ( sina × cosa) / 1 - cos ^2 a
  • sina + ( sina× cosa) / sin^2a [ sin^2a = 1 - cos ^2 a]
  • sina / sin ^2a + sina cos a/ sin^2a
  • 1/sin a + cos a / sin a
  • cosec a + cot a [ 1/ sin a = cosec a & cos a/ sin a= cot a
  • Hence LHS = RHS

PROVED

Hope it will help you.

Similar questions