Math, asked by muktadasgupta839, 4 months ago

Prove that
sin A / 1 + cos A
= cosec A - cot A​

Answers

Answered by mathdude500
0

{\large {\underline {\blue {\bf {Question}}}}}

Prove that

 \bf \: \dfrac{sinA}{1 + cosA}  = cosecA - cotA

{\huge {\underline {\blue {\bf {Answer}}}}}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1) . \: \boxed{ \pink{\bf  \:  {sin}^{2} x +  {cos}^{2}x = 1 }}

(2) . \: \boxed{ \purple{\bf  \: cosecx \:  =  \: \dfrac{1}{sinx}   }}

(3). \: \: \boxed{ \red{\bf  \: secx \:  =  \: \dfrac{1}{cosx}   }}

\large\underline\purple{\bold{Solution :-  }}

Consider

  \bf \longmapsto \:  \bf \:LHS

  \bf \longmapsto \:  \bf \:\dfrac{sinA}{1 + cosA}

\rm :\implies\:\dfrac{sinA}{1 + cosA}  \times \dfrac{1 - cosA}{1 - cosA}

\rm :\implies\:\dfrac{sinA(1 - cosA)}{1 -  {cos}^{2} A}

\rm :\implies\:\dfrac{sinA(1 - cosA)}{ {sin}^{2} A}

\rm :\implies\:\dfrac{1 - cosA}{sinA}

\rm :\implies\:\dfrac{1}{sinA}  - \dfrac{cosA}{sinA}

\bf\implies \:cosecA - cotA

  \bf \longmapsto \:  \bf \:RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Additional Information:- Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by SuheraMomin75
0

Answer:

Your Answer Is Given Below

Step-by-step explanation:

LHS= sin A / 1 + cos A

= (sin A / 1 + cos A) × (1 - cos A / 1 - cos A)------{Rationalising the denominator}

= sin A (1 - cos A) / 1 - cos^2 A

= sin A (1 - cos A) / sin^2 A----{1st identity}

= 1 / sin A - cos A / sin A

= cosec A - cot A-----{Since 1 / sin A= cos A, cos A / sin A= cot A}

= RHS

THEREFORE, sin A / 1 + cos A= cosec A - cot A

HENCE PROVED.........

Similar questions