Prove that
sin A / 1 + cos A
= cosec A - cot A
Answers
Prove that
Consider
Additional Information:-
Additional Information:- Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
Answer:
Your Answer Is Given Below
Step-by-step explanation:
LHS= sin A / 1 + cos A
= (sin A / 1 + cos A) × (1 - cos A / 1 - cos A)------{Rationalising the denominator}
= sin A (1 - cos A) / 1 - cos^2 A
= sin A (1 - cos A) / sin^2 A----{1st identity}
= 1 / sin A - cos A / sin A
= cosec A - cot A-----{Since 1 / sin A= cos A, cos A / sin A= cot A}
= RHS
THEREFORE, sin A / 1 + cos A= cosec A - cot A
HENCE PROVED.........