Prove that : sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A
Answers
Answered by
4
Step-by-step explanation:
Solution :-
On taking LHS
=> sin A (1 + tan A) + cos A (1 + cot A)
=>sinA[1+(sinA/cosA)]+cosA[1+(cosA/sinA)]
Since , Tan A = Sin A / Cos A
and Cot A = Cos A / Sin A
=>sinA[(cosA+sinA)/cosA]+cosA[(sinA+cosA)/sinA]
=>[sinA(cosA+sinA)/cosA]+[cos A(sinA+cosA)/sinA]
=> (cosA+sinA)[(sin A/cos A)+(cos A/sin A)]
=> (cosA+sinA)[(sin²A+cos²A)/(sinA cosA)]
=> (cosA+sinA)[1/(sin A cos A)]
Since , Sin² A + Cos² A = 1
=> (cos A + sin A )/(sin A cos A)
=> [cosA/(sinAcosA)]+[sinA/(sinA cosA)]
=> (1/sin A) + (1/cos A)
=> cosec A + sec A
=> sec A + cosec A
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
[sinA(1+tanA)]+[cosA(1+cotA)] =secA+cosecA
Used formulae :-
→ Tan A = Sin A / Cos A
→ Cot A = Cos A / Sin A
→ Sin² A + Cos² A = 1
→ Sec A = 1/Cos A
→ Cosec A = 1/Sin A
Similar questions