Math, asked by bhoomi531, 11 months ago

Prove that :

sin A (1+tan A ) + cosA (1+cot A) =secA + cosecA .​

Answers

Answered by sanishaji30
1

Answer:

sin A( 1+ tan A) + cos A ( 1 + cot A) = sec A +cosec A

LHS

multiplying them we get

sin A + sin A . tan A + cos A + cos A . cot A

tan A = sin A / cos A and cot A = cos A / sin A so putting the values we get

sin A + sin A . sin A / cos A + cos A + cos A . cos A / sin A

sin A + sin2A / cos A + cos A + cos2A / sin A

sin A + cos2A / sin A + cos A + sin2A / cos A

1/ sin A(sin2A + cos 2A )+ 1/ cosA ( cos2A + sin2A)

putting the value of cos2A + sin2A = 1 we get

1 / sin A + 1/ cos A

i.e. cosec A+ sec A = RHS

LHS = RHS

Answered by chandanpratik53
5

Answer:

Step-by-step explanation:

SOLVING L.H.S.

⇒ sin A (1 + \frac{sin A}{cos A}) + cos A (1 + \frac{cos A}{sin A})

⇒ sin A (\frac{cos A + sin A}{cos A}) + cos A (\frac{sin A + cos A}{sin A})

\frac{sin A.cos A + sin^{2}A }{cos A} + \frac{sin A.cos A + cos^{2}A }{sin A}

\frac{sin^{2}A.cos A + sin^{3}A + sin A.cos^{2}A + cos^{3}A   }{sin A.cos A}

\frac{sin^{2}A(cos A+sin A)+cos^{2}A(sin A+cos A)  }{sin A.cos A}

\frac{(sin^{2}A+cos^{2}A)(sin A+cos A)  }{sinA.cosA}

\frac{sinA+cosA}{sinA.cosA}

SOLVING R.H.S.

\frac{1}{cosA} + \frac{1}{sinA}

\frac{sinA+cosA}{sinA.cosA}

∴ L.H.S.=R.H.S.

HENCE PROVED!!!

PLEASE MARK THIS ANSWER AS THE BRAINLIEST!!!

Similar questions