Prove that :
sin A (1+tan A ) + cosA (1+cot A) =secA + cosecA .
Answers
Answered by
1
Answer:
sin A( 1+ tan A) + cos A ( 1 + cot A) = sec A +cosec A
LHS
multiplying them we get
sin A + sin A . tan A + cos A + cos A . cot A
tan A = sin A / cos A and cot A = cos A / sin A so putting the values we get
sin A + sin A . sin A / cos A + cos A + cos A . cos A / sin A
sin A + sin2A / cos A + cos A + cos2A / sin A
sin A + cos2A / sin A + cos A + sin2A / cos A
1/ sin A(sin2A + cos 2A )+ 1/ cosA ( cos2A + sin2A)
putting the value of cos2A + sin2A = 1 we get
1 / sin A + 1/ cos A
i.e. cosec A+ sec A = RHS
LHS = RHS
Answered by
5
Answer:
Step-by-step explanation:
SOLVING L.H.S.
⇒ sin A (1 + ) + cos A (1 + )
⇒ sin A () + cos A ()
⇒ +
⇒
⇒
⇒
⇒
SOLVING R.H.S.
⇒
⇒
∴ L.H.S.=R.H.S.
HENCE PROVED!!!
PLEASE MARK THIS ANSWER AS THE BRAINLIEST!!!
Similar questions