Prove that:
sin A - 2sin³A / 2cos³A - cos A = tan A
Answers
Answered by
20
kvnmurty:
thanks & u r welcome
Answered by
2
Step-by-step explanation:
sinA−2sin
sinA−2sin 3
sinA−2sin 3 A
sinA−2sin 3 A
sinA−2sin 3 A =
sinA−2sin 3 A = cosA(2cos
sinA−2sin 3 A = cosA(2cos 2
sinA−2sin 3 A = cosA(2cos 2 A−1)
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A)
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A)
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A) =
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A) = cosAcos2A
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A) = cosAcos2AsinAcos2A
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A) = cosAcos2AsinAcos2A
sinA−2sin 3 A = cosA(2cos 2 A−1)sinA(1−2sin 2 A) = cosAcos2AsinAcos2A =tanA.
Similar questions