Prove that sin (A+B)/2 = cos C/2
Answers
Answered by
1
we know that A+B+C = 180
⇒ A+B = 180-C
⇒(A+B)/2 = (180-C)/2
⇒(A+B)/2 = 90 - C/2
So sin (A+B)/2
= sin (90 - C/2)
= cos (C/2) (since sin(90-β) = cosβ)
⇒ A+B = 180-C
⇒(A+B)/2 = (180-C)/2
⇒(A+B)/2 = 90 - C/2
So sin (A+B)/2
= sin (90 - C/2)
= cos (C/2) (since sin(90-β) = cosβ)
Similar questions