Math, asked by NaveenaSamali, 1 year ago

Prove that Sin (A+B) -- 2SinA + Sin (A+B) / Cos (A+B) -- 2Cos A + Cos( A--B)= Tan A

Answers

Answered by Pitymys
2

Recall the identities,

 \sin (A+B)+\sin (A-B)=2\sin A \cos B\\<br />\cos (A+B)+\sin (A-B)=2\cos A \cos B

Here,

 LHS=\frac{\sin (A+B)-2\sin A+\sin (A-B)}{\cos (A+B)-2\cos A+\sin (A-B)}\\<br />LHS=\frac{2\sin A \cos B-2\sin A}{2\cos A \cos B-2\cos A }\\<br />LHS=\frac{2\sin A( \cos B-1)}{2\cos A( \cos B-1) }\\  <br />LHS=\frac{\sin A}{\cos A }\\  <br />LHS=\tan A=RHS

Similar questions