Prove that :
sin(A+B) =sin A.cos B + cos A.sin B
ICSE class 10th
Answers
To Prove :-
sin ( A + B ) = sinA. cosB + cosA. sinB
Answer :-
In the given figure ,
∠TPR + ∠PRT = 90°
and , ∠ORT + ∠PRT = 90°
•°• ∠TPR = ∠ORT = ∠ROX = A
Now , In right triangle POQ ,
sin ( A + B )
= PQ / OP
= ( PT + TQ ) / OP
= PT / OP + TQ / OP
= PT / OP + RS / OP [ °•° TQ = RS ]
= PT / OP × PR / OP + RS / OR . OR / OP
= cosA. sinB + sinA. cosB [ °•° ∠TPR = A ]
= sinA cosB + cosA sinB. [ Hence Proved ]
ANSWER
This question can be proved in many different ways.
I will do this proof this geometrically.
Now, for diagram plz refer to the attachment given.
We know=>
-Angle B +(A-B) =B+A-B =A
So, Angle PQR = A
-Angle OPS =90°
-length of OS = 1(unit length)
To prove=
sin(A+B) =sin A.cos B + cos A.sin B
Proof=>
Sin(A-B) =
=>Sin(A-B) =
=>Sin(A-B) =ST. - - - - - - - - (i)
Now we have =>
ST = PR - PQ
(Since QR = ST)
Now,
-Sin(B) =
=>Sin(B) =
=>Sin(B) = PS
-Cos(B) =
=>Cos(B) =
=>Cos(B) =OP
-Sin(A) =
=>Sin(A) =
=>SinACosB = PR - - - - - - (ii)
AND CosASinB = PQ. - - - - - - - (iii)
So from (i ),(ii) and (iii) we get=>
ST = PR - PQ
sin(A+B) =sin A.cos B + cos A.sin B
Hence proved