Math, asked by venkatmaths44, 7 months ago

Prove that Sin(A+B) = SinA.CosB+CosA.SinB​

Answers

Answered by Anonymous
3

Given :

  • Sin(A+B) = SinA.CosB+CosA.SinB

To prove :

  • Sin(A+B) = SinA.CosB+CosA.SinB

Solution :

  \sf \blue{\sin( A + B) \:  =  \dfrac{O}{H}  =  \dfrac{PR}{1}} \\  \\  \sf \pink{ \therefore \: sin (A + B = PR)} \\  \\  \sf \orange{Now \: sin \: A =  \dfrac{O}{H} =  \dfrac{PQ}{1} = PQ} \\  \\  \sf \green{ \dfrac{QS}{OQ} = QS = cos \: A \: sin \: B} \\  \\  \sf \red{cos \: A  = \dfrac{R}{H}  =  \dfrac{OQ}{1} } \\  \\  \sf \blue{ \therefore \: cos \: A = OQ} \\  \\  \sf \pink{cos \: B =  \dfrac{P}{H} =  \frac{PT}{sin \: N}  } \\  \\  \sf \orange{ \therefore \: PI = sin \: A \: cos \: B} \\  \\  \sf \green{Now \: PR \:  = PT + QS \:  \:  \:  \:  \:  \:  \: as \: (TR \:  = QS)} \\  \\   \implies\sf \red{PT + QS} \\ \\  \boxed{\sf {\blue{sin \: (A + B) = sin \: A \: cos \: B \:  + cos \: A \: sin \: B \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Hence \: proved}}}

Attachments:
Similar questions