Prove that (Sin A + Cos A) ² + (Cos A + Sec A) ² = 7 + Tan² A + Cot² A
Answers
Answered by
3
Answer:
Given:
(sin A + cosec A)^2 + (cos A + sec A)^2
To Find:
7 + tan^2A + cot^2A
Proof:
( sinA + cosecA)^2 + ( cosA + secA)^2
sin^2A + cosec^2A + 2 sinA. cosec A + cos^2A + sec^2A + 2 cosA . secA
here sin^2A+cos^2A =1
1 + 2 + 2 + cosec^2A + sec^2A
here cosec^2A = 1+cot^2A , sec^2A = 1+tan^2A
5 + 1 + 1 + cot^2A + tan^2A
7 + cot^2A + tan^2A
Similar questions