Math, asked by aashi05asmi, 8 months ago

Prove that (sin A - cos A)(cos A - sec A)(tan A + cot A) = 1

Answers

Answered by stridalesh
0

Answer:

Step-by-step explanation;

Given:

( secA + tanA ) ( 1 - sinA )

we know that

secA = 1/cosA

tanA = sins/cosA

now

( 1 /cosA + sinA /cosA ) ( 1 - sinA )

= ( 1 + sinA ) ( 1 - sinA )/ cosA

= 1² - sin²A / cosA

= cos²A / cosA

= cosA

RHS

Read more on Brainly.in - https://brainly.in/question/1488153#readmore

Answered by Anonymous
1

Given

( secA + tanA ) ( 1 - sinA )

we know that

secA = 1/cosA

tanA = sins/cosA

now

( 1 /cosA + sinA /cosA ) ( 1 - sinA )

= ( 1 + sinA ) ( 1 - sinA )/ cosA

= 1² - sin²A / cosA

= cos²A / cosA

= cosA

RHS

Similar questions