Math, asked by s13968, 1 month ago

prove that (sin a+cos a)/(sin a-cos a)+(sin a-cos a)/(sin a+cos a)=(2)/(1-2 cos^(2)a)

Answers

Answered by mohit810275133
1

Step-by-step explanation:

HEY MATE........

 \frac{ sin \: a + cos \: a  }{sin \: a \:  -  \: cos \: a}  +  \frac{sin \: a \:  - cos \: a}{sin \: a \:  + cos \: a}   \\  \\ =  \frac{ { \:  \:  \ {(sin \: a \:  + cos \: a)}^{2}  +  ( {sin \: a \:  - cos \: a)}}^{2} }{(sin \: a \:  -  \: cos \: a)} (sin \: a \:  + cos \: a) \\  \\ \implies \:  \frac{ {sin}^{2} a +  {cos}^{2} a + 2sin \: a \: cos \: a +  {sin}^{2}a +  {cos}^{2}a - 2sina.cos \: a  }{ {sin}^{2} a -  {cos}^{2} a}  \\  \\ \implies \:  \frac{2( {sin}^{2}a +  {cos}^{2}  a}{ {sin}^{2} a -  {cos}^{2} a}  \\  \\ \implies \:  \frac{2}{ {sin}^{2}a - (1 -  {sin}^{2}  a)}  \\  \\ \implies \:  \frac{2}{ {sin}^{2} a - 1 +   {sin}^{2}a }  \\  \\ \implies \:  \frac{2}{2 {sin}^{2}a - 1 }  \\  \\ hence \: proved

Answered by hansikavie
3

Answer:

who are you

Step-by-step explanation:

you haven't given me thanks...

Similar questions