prove that sin A+ cos A/sin A-cos A + sin A- cosA/sin A+cosA=2/2sin^2A-1=2/1-2cos^2 A
Answers
Answered by
41
(sinA+cosA)/(sinA-cosA) -(sinA-cosA)/(sinA+cosA)
=[(sinA+cos A)^2-(sinA-cosA)^2]/(sinA-cosA)(sinA+COS A)
=2(sin^2A+cos^2A)/(sin^2-cos^2A)
=2/(sin^2A-cos^2A)
=2/(1-cos^2A-cos^2A)
=2/(1-2cos^2A) or 2/[sin^2A-(1-cos^2A)]
=2/(2sin^2A-1).
Hope this helps you.
=[(sinA+cos A)^2-(sinA-cosA)^2]/(sinA-cosA)(sinA+COS A)
=2(sin^2A+cos^2A)/(sin^2-cos^2A)
=2/(sin^2A-cos^2A)
=2/(1-cos^2A-cos^2A)
=2/(1-2cos^2A) or 2/[sin^2A-(1-cos^2A)]
=2/(2sin^2A-1).
Hope this helps you.
Answered by
5
Answer:
I hope help you this answer
Attachments:
Similar questions
Math,
6 months ago
Math,
6 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago