Math, asked by sohanlalpawan, 10 months ago

prove that : (sin A +cos A/sinA - cosA) +(sinA - cos A / sin A +cos A )=2 /1 - 2 cos^2A​

Answers

Answered by Anonymous
55

To Prove :-

\sf \dfrac{ \sin(a)  +  \cos(a) }{ \sin(a) -  \cos(a)  }  + \dfrac{ \sin(a)   -   \cos(a) }{ \sin(a)  +  \cos(a)  }  =  \dfrac{2}{1 -  { \cos(a) }^{2} }

Solution :-

\sf \implies \dfrac{ \sin(a)  +  \cos(a) }{ \sin(a) -  \cos(a)  }  + \dfrac{ \sin(a)   -   \cos(a) }{ \sin(a)  +  \cos(a)  }  =  \dfrac{2}{1 -  { \cos(a) }^{2} }

Taking LHS :-

\sf \implies \dfrac{ \sin(a)  +  \cos(a) }{ \sin(a) -  \cos(a)  }  + \dfrac{ \sin(a)   -   \cos(a) }{ \sin(a)  +  \cos(a)  }

\sf \implies \dfrac{( \sin(a)  +  \cos(a) {)}^{2}  + ( { \sin(a)  -  \cos(a) })^{2}  }{ \sin(a)^{2} -  \cos(a)^{2}   }

\sf \implies \:  \dfrac{ { {\sin(a)}^{2} +  { \cos(a) }^{2}  + 2 \sin(a)  \cos(a)  +  { \sin(a) }^{2}  +  { \cos(a) }^{2} - 2 \sin(a) \cos(a)    }^{2} }{ { \sin(a) }^{2} -  { \cos(a) }^{2}  }

  \sf \implies \: we \: know \: that \:  { \sin(a) }^{2}  +  { \cos(a) }^{2}  = 1

\sf \implies \:  \dfrac{ { 1  + 2 \sin(a)  \cos(a)  +  1 - 2 \sin(a) \cos(a)    }}{ { \sin(a) }^{2} -  { \cos(a) }^{2}  }

\sf \implies \:  \dfrac{ { 2 + 2 \sin(a)  \cos(a)  - 2 \sin(a) \cos(a)    } }{ { \sin(a) }^{2} -  { \cos(a) }^{2}  }

\sf \implies \:  \dfrac{ { 2 +  \cancel{2 \sin(a)  \cos(a)  } \cancel {- 2 \sin(a) \cos(a) }   } }{ { \sin(a) }^{2} -  { \cos(a) }^{2}  }

\sf \implies \:  \dfrac{ { 2 }}{ { \sin(a) }^{2} -  { \cos(a) }^{2}  }

  \sf \implies \: we \: know \: that \:  { \sin(a) }^{2}  =1 -  { \cos(a) }^{2}

\sf \implies \:  \dfrac{ { 2 }}{ 1 -  { \cos(a) }^{2}  -  { \cos(a) }^{2}  }

\sf \implies \:  \dfrac{ { 2 }}{ 1 - 2 { \cos(a) }^{2}  }

Hence proved


BrainlyRacer: nice
Anonymous: Thank uh (:
Similar questions