Math, asked by Arorabhavika3346, 1 year ago

Prove that: (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A

Answers

Answered by BrainlyWarrior
559
\textbf{Hey there}!

\textbf{The Identities Uesd} :

1+tan²A=sec²A

1+cot²A=cosec²A

sin²A+cos²A=1

cosecA=\dfrac{1}{sinA}

secA=\dfrac{1}{cosA}

\textbf{Question}: (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A

\textbf{Answer} :

=(sinA+cosecA)²+(cosA+secA)²

=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA

=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA

=1+cosec²A+sec²A+2+2

=5+(1+cot²A)+(1+tan²A)

=7+tan²A+cot²A


Be Brainly.

Swarup1998: Great answer! :)
Answered by muscardinus
94

Given that,

(\sin A+cosec A)^2+(\cos A+\sec A)^2=7+\tan^2 A+\cot^2 A

To prove,

LHS = RHS

Solution,

Taking LHS,

(\sin A+cosec A)^2+(\cos A+\sec A)^2

using identity, (a+b)^2=a^2+b^2+2ab

(\sin A+cosec A)^2+(\cos A+\sec A)^2=\sin^2 A+cosec^2+2\sin A cosec A+\cos^2 A+\sec^2 A+2\cos A \sec A

\sin A=\dfrac{A}{cosec A}

So,

=\sin^2 A+cosec^2+2\sin A \times \dfrac{1}{\sin A}+\cos^2 A+\sec^2 A+2\cos A\times \dfrac{1}{\cos A}\\\\=\sin^2 A+cosec^2+2+\cos^2 A+\sec^2 A+2

Since, \sin ^2 A+\cos^2 A=1

=cosec^2 A+2+1+\sec^2 A+2 ....(1)

Now,

cosec^2 A=\cot^2 A+1\\\\\text{and}\\\\\sec^2 A=1+\tan^2A

So, equation (1) becomes :

=\cot^2 A +1+2+1+1+\tan^2 A+2\\\\=7+\tan^2 A +\cot ^2 A\\\\= \text{RHS}

Therefore, LHS = RHS.

Similar questions