Prove that: (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
Answers
Answered by
559
!
:
1+tan²A=sec²A
1+cot²A=cosec²A
sin²A+cos²A=1
cosecA=
secA=
: (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
:
=(sinA+cosecA)²+(cosA+secA)²
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A
Be Brainly.
:
1+tan²A=sec²A
1+cot²A=cosec²A
sin²A+cos²A=1
cosecA=
secA=
: (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2A + cot^2A
:
=(sinA+cosecA)²+(cosA+secA)²
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A
Be Brainly.
Swarup1998:
Great answer! :)
Answered by
94
Given that,
To prove,
LHS = RHS
Solution,
Taking LHS,
using identity,
So,
Since,
....(1)
Now,
So, equation (1) becomes :
Therefore, LHS = RHS.
Similar questions