Math, asked by gs22ji2150, 7 months ago

Prove that : (Sin A + cosec A)2 + (cos A + sec A)2 =7 + tan2 A + cot2 A

Answers

Answered by dryogeshkodhawade123
2

Answer:

(sinA+cscA)

2

+(cosA+secA)

2

=sin

2

A+csc

2

A+2sinAcscA+cos

2

A+sec

2

A+2cosAsecA .......As[a²+b²+2ab=(a+b)²]

=sin

2

A+csc

2

A+2sinA×

sinA

1

+cos

2

A+sec

2

A+2cosA

cosA

1

.

........... since secA=

cosA

1

and cscA=

sinA

1

=sin

2

A+csc

2

A+2+cos

2

A+sec

2

A+2

=(sin

2

A+cos

2

A)+csc

2

A+sec

2

A+4

=1+1+cot

2

A+1+tan

2

A+4 ........... since csc

2

A=1+cot

2

A and sec

2

A=1+tan

2

A

=7+tan

2

A+cot

2

A

Hence proved.

Step-by-step explanation:

mark me as brainlist please

follow me i follow you back

give thanks❤❤❤❤

Answered by Anonymous
0

Answer:

7 + tan2 A + cot2 A

Step-by-step explanation:

= sin 2A + csc 2A + 2 + cos 2A + sec 2A +2

= (sin 2A + cos 2A) + csc 2A + sec 2A + 4

= 1 + 1 cot 2A + 1 + tan 2A + 4 ... since csc

= 2A = 1 + cot 2A and sec 2A = 1+ tan 2A

= 7 + tan 2 A + cot 2A

Similar questions