Prove that.
(Sin A + cosec A)2
+ (cos A + sec A)2
= 7 + tan2 A + cot2 A
Answers
Answered by
92
On taking left hand side,
By identity we know,
so,
Since,
So ,
Since,
Since,
= R. H. S
Anonymous:
fantabulous..
Answered by
47
Solution:-
Given:-
( SinA + CosecA)² + (CosA + SecA)²
To Prove:-
( SinA + CosecA)² + (CosA + SecA)²= 7 + tan²A + Cot²A
Proof:-
( SinA + CosecA)² + (CosA + SecA)²
=> Sin²A + Cosec²A + 2. SinA. CosecA + Cos²A + Sec²A + 2. CosA . SecA
=> Sin²A + Cos²A + 2. SinA. 1/SinA + Sec²A + Cosec²A + 2. CosA. 1/CosA
=> 1 + 2 + 2 + Sec²A + Cosec²A
=> 5 + 1 + Tan²A + 1 + Cot²A
=> 7 + Tan²A + Cot²A.
Hence Proved!!
IDENTITY USED:-
Cosec²A = 1 + Cot²A
Sec²A = 1 + Tan²A.
Similar questions