Math, asked by Aria48, 5 months ago

Prove that (sin A + cosec A)² +(cos A + sec A)² = 7 + tan²A + co²A.

if you don't know please don't answer,if anyone gives silly or irrevelent answers I will report them.​

Answers

Answered by mohinisuryawanshi10
0

Step-by-step explanation:

(sinA+cscA) ^2+(cosA+secA) ^2

=sin ^2 A+csc ^2 A+2sinAcscA+cos ^2

A+sec ^2 A+2cosAsecA .......As[a²+b²+2ab=(a+b)²]

=sin ^2 A+csc ^2 A+2sinA× 1 / sinA +cos ^2 A+sec ^2 A+2cosA 1 / cosA

........... since secA= 1 / cosA and cscA= 1 / sinA

=sin ^2 A+csc ^2 A+2+cos ^2 A+sec ^2 A+2

=(sin ^2 A+cos ^2 A)+csc ^2 A+sec ^2 A+4

=1+1+cot ^2 A+1+tan A+4 ...........

since csc ^2 A=1+cot ^2 A , and sec 2 A=1+tan ^2 A

=7+tan ^2 A+cot ^2 A

Please mark aa brainliest

Do follow me

Hence proved.

Answered by varadad25
5

Answer:

( sin A + cosec A )² + ( cos A + sec A )² = 7 + tan² A + cot² A

Step-by-step-explanation:

We have to prove that, ( sin A + cosec A )² + ( cos A + sec A )² = 7 + tan² A + cot² A.

Now, the given trigonometric equation is

( sin A + cosec A )² + ( cos A + sec A )² = 7 + tan² A + cot² A.

LHS = ( sin A + cosec A )² + ( cos A + sec A )²

⇒ LHS = ( sin A )² + 2 * sin A * cosec A + ( cosec A )² + ( cos A )² + 2 * cos A * sec A + ( sec A )² - - - [ ∵ ( a + b )² = a² + 2ab + b² ]

⇒ LHS = sin² A + 2 sin A cosec A + cosec² A + cos² A + 2 cos A sec A + sec² A - - - [ ∵ ( sin A )² = sin² A ]

⇒ LHS = sin² A + cos² A + cosec² A + sec² A + 2 sin A * 1 / sin A + 2 cos A * 1 / cos A - - [ ∵ cosec A = 1 / sin A & sec A = 1 / cos A ]

⇒ LHS = 1 + cosec² A + sec² A + 2 * sin A ÷ sin A + 2 * cos A ÷ cos A - - - [ ∵ sin² A + cos² A = 1 ]

⇒ LHS = 1 + cosec² A + sec² A + 2 * 1 + 2 * 1

⇒ LHS = 1 + cosec² A + sec² A + 2 + 2

⇒ LHS = 1 + 2 + 2 + cosec² A + sec² A

⇒ LHS = 3 + 2 + cosec² A + sec² A

⇒ LHS = 5 + cosec² A + sec² A

⇒ LHS = 5 + ( 1 + cot² A ) + sec² A - - - [ ∵ cosec² A = 1 + cot² A ]

⇒ LHS = 5 + 1 + cot² A + sec² A

⇒ LHS = 6 + cot² A + ( 1 + tan² A ) - - - [ ∵ sec² A = 1 + tan² A ]

⇒ LHS = 6 + cot² A + 1 + tan² A

⇒ LHS = 6 + 1 + cot² A + tan² A

⇒ LHS = 7 + cot² A + tan² A

⇒ LHS = 7 + tan² A + cot² A

RHS = 7 + tan² A + cot² A

∴ LHS = RHS

Hence proved!

Similar questions