Math, asked by ashi77735, 10 months ago

prove that (sin A+cosec A)^2 + (cos A+secA)^2 =7+ tan^2 A + cot^2A. ​

Answers

Answered by abhi569
4

Answer:

Step-by-step explanation:

⇒ ( sinA + cosecA )² + ( cosA + secA )²

⇒ ( sin²A + cosec²A + 2sinAcosecA ) + ( cos²A + sec²A + 2cosAsecA )

        sinAcosecA = 1 = cosAsecA

⇒ ( sin²A + cosec²A + 2(1) ) + ( cos²A + sec²A + 2(1) )

⇒ sin²A + cosec²A + 2 + cos²A + sec²A + 2

sin²A + cos²A + 2 + 2 + cosec²A + sec²A

       cosec²A = 1 + cot²A ; sec²A = 1 + tan²A

⇒ 1 + 2 + 2 + ( 1 + cot²A ) + ( 1 + tan²A )

⇒ 1 + 2 + 2 + 1 + cot²A + 1 + tan²A

⇒  7 + tan²A + cot²A

  Hence proved.

Answered by Anonymous
28

To Prove :-

→ (sin A + Cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A .

Solution :-

Taking LHS -

\sf{ \implies\: LHS =  \: ( { \sin A  +  \cosec A )}^{2} + ( { \cos A +  \sec A ) }}^{2} \\

\sf{ \implies \:  \cosec A =  \frac{1}{ \sin A}   \: and \:  \sec A =  \frac{1}{ \cos A}  } \\

\sf{ \implies \: ( { \sin A +  \frac{1}{ \sin A}  )}^{2}  + ( { \cos A  +  \frac{1}{ \cos A  } }^{2} } \\

\sf{\implies \: ( {a + b)}^{2} =  {a}^{2} +  {b}^{2}  + 2ab}   \\

Using this identity

\sf{ \implies \:  { \sin }^{2} A +  \frac{1}{ { \sin }^{2} A} + 2 \sin A. \frac{1}{ \sin A }    +  { \cos }^{2} A +  \frac{1}{ { \cos  }^{2}  A}    + 2 \cos A. \frac{1}{ \cos A } }   \\

\sf{\implies \: {\sin }^{2} A + \frac{1}{{\sin }^{2} A} +2 +  { \cos }^{2} A +  \frac{1}{ { \cos }^{2} A}  + 2 }\\

sin²A + cos²A = 1

\sf{\implies \: 2 + 2 + 1 +  \frac{1}{ { \sin }^{2} A} +  \frac{1}{ { \cos }^{2}A }  }\\

Putting value of 1 in fraction

\sf{ \implies \: 5 +  \frac{ { \sin  }^{2} A +  { \cos  }^{2} A}{ { \sin }^{2} A } + \frac{ { \sin }^{2} A +  { \cos }^{2} A}{ { \cos  }^{2} A} }\\

\sf{ \implies \: 5 +  \frac{ { \sin  }^{2}A }{ { \sin  }^{2} A}  +  \frac{ { \cos }^{2}A }{ { \sin  }^{2} A }  +  \frac{ { \sin  }^{2} A}{ { \cos  }^{2} A }  +  \frac{ { \cos  }^{2} A }{ { \cos }^{2} A }} \\

\sf{\implies \: 5 + 1 + 1 +  \frac{ { \sin }^{2} A}{ { \cos }^{2} A}  +  \frac{ { \cos }^{2} A }{ { \sin }^{2} A }} \\

\underline{\underline{\sf{\implies \: 7 +  { \tan }^{2} A    +  { \cot }^{2} A }}} \\

LHS = RHS

Hence proved

Similar questions