prove that (sin A+cosec A)^2 + (cos A+secA)^2 =7+ tan^2 A + cot^2A.
Answers
Answered by
4
Answer:
Step-by-step explanation:
⇒ ( sinA + cosecA )² + ( cosA + secA )²
⇒ ( sin²A + cosec²A + 2sinAcosecA ) + ( cos²A + sec²A + 2cosAsecA )
sinAcosecA = 1 = cosAsecA
⇒ ( sin²A + cosec²A + 2(1) ) + ( cos²A + sec²A + 2(1) )
⇒ sin²A + cosec²A + 2 + cos²A + sec²A + 2
⇒ sin²A + cos²A + 2 + 2 + cosec²A + sec²A
cosec²A = 1 + cot²A ; sec²A = 1 + tan²A
⇒ 1 + 2 + 2 + ( 1 + cot²A ) + ( 1 + tan²A )
⇒ 1 + 2 + 2 + 1 + cot²A + 1 + tan²A
⇒ 7 + tan²A + cot²A
Hence proved.
Answered by
28
To Prove :-
→ (sin A + Cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A .
Solution :-
Taking LHS -
Using this identity
sin²A + cos²A = 1
Putting value of 1 in fraction
LHS = RHS
Hence proved
Similar questions