Math, asked by Bhoni2005, 4 hours ago

Prove that (Sin A + CosecA)2 + (Cos A + Sec A)2 = 7 + Tan A + Cot A.

hey guys anyone of you answer this question quickly​

Answers

Answered by llItzDishantll
6

Answer:

Question:- Prove that: (sin A + cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A

Identities Used:-

1 + tan²A = sec²A  

1 + cot²A = cosec²A  

sin²A + cos²A = 1

cosecA = \frac{1}{sinA}

secA = \frac{1}{cosA}

Answer:-

= (sinA + cosecA)²+ (cosA + secA)²  

= sin²A + cosec²A + 2sinA cosecA + cos²A + sec²A + 2cosA secA  

= sin²A + cos²A + cosec²A + sec²A + 2sinA × \frac{1}{sinA} + 2cosA× \frac{1}{cosA}  

= 1 + cosec²A + sec²A + 2 + 2  

= 5 + (1+cot²A) + (1+tan²A)  

= 7 + tan²A + cot²A

Hence Proved.

Similar questions