prove that sin a minus sin beta upon cos theta minus Cos a = COt (a + beta) upon 2
Answers
Answered by
2
Given that,
[sinαsinβ−cosαcosβ+1=0]
Then,
⇒sinαsinβ−cosαcosβ=−1
⇒−(cosαcosβ−sinαsinβ)=−1
⇒cosαcosβ−sinαsinβ=1
⇒cos(α+β)=1
⇒cos(α+β)=cos0
0
Then,
(α+β)=0
α=−β...................(1)
L.H.S.
1+cotαtanβ
By equation (1)
1+cot(−β)tanβ
=1−cotβtanβ Since, cot(−θ)=cotθ
=1−cotβ.
cotβ
1
=1−1
=0
L.H.S.=R.H.S.
Hence proved
Similar questions