Math, asked by HanikaYash, 11 months ago

Prove that :
(sin A+ sec A)²+(cos A+codec A)²
=(1+ sec A codec A)²

Answers

Answered by Anonymous
37

 \huge{\boxed{\mathtt{\red{Solution:-}}}}

 \bf \: L.H.S.

 \sf =  \: (sin \: A \:  +  \: sec \: A) {}^{2}  + (cos \: A \:  +  \: cosec \: A) {}^{2}

 \sf =  \bigg(sin \: A  \: +  \frac{1}{cos \: A} \bigg) {}^{2}  +  \bigg( cos \: A +  \frac{1}{sin \: A} \bigg) {}^{2}  \\

 \sf =   \: \bigg(  \frac{sin \: A \: cos \: A + }{cos \: A} \bigg) {}^{2} +   \bigg( \frac{sin \: A \: cos \: A \:+1}{sin \: A} \bigg) {}^{2}   \\

 \sf =  \:  \frac{(sin \: A \: cos \: A \:  + 1) {}^{2} }{cos {}^{2}  \: A}  +  \frac{(sin \: A \: cos \: A + 1) {}^{2} }{sin {}^{2}A} \\

 \sf \: Taking  \: \: (sin \: A \: cos \: A \:  + 1) {}^{2}  \: common,

  = \sf \: (sin \:  A\: cos \: A \:  + 1) {}^{2}  \bigg( \frac{1}{cos {}^{2}A} +  \frac{1}{sin {}^{2}  A} \bigg) \\

  = \sf \: (sin \: A \: cos \: A + 1) {}^{2}  \bigg( \frac{sin {}^{2} A + cos {}^{2} A}{cos {}^{2} A \: sin {}^{2} A} \bigg) \\

 =  \:  \sf \: (sin \: A \: cos \: A + 1) {}^{2}   \: \frac{1}{(cos \: A \: sin \: A)} \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  |  \:  \: ∵ \: sin {}^{2}  \: A + cos {}^{2} A = 1

 =  \sf  \bigg( \frac{sin \: A \: cos \: A + 1}{cos \: A \: sin \: A} \bigg) {}^{2}    \:  \:  \:  \:  \:  \:  \:  \bigg |  \:  ∵\frac{ a {}^{2} }{b {}^{2} } =  \bigg( \frac{a}{b} \bigg) {}^{2}  \\

 = \:   \sf \bigg(\frac{sin \: A \: cos \: A }{cos \: A \: cos \: A} +  \frac{1}{cos \: A \: sin \: A} \bigg) {}^{2}  \\

 \sf =  \:  \bigg(1 +  \frac{1}{cos \: A} \frac{1}{sin \: A} \bigg) {}^{2}  \\

 \sf =  \: (1 + sec \: A \: cosec \: A) {}^{2}  =  \: R.H.S

Similar questions