Math, asked by avanthu1405, 11 months ago

Prove that -
sin A
Sec A+tan A-1
cosA
cosecA+cotA-1=1​

Answers

Answered by amirgraveiens
1

Proved below.

Step-by-step explanation:

Given:

\frac{sin A}{Sec A+tan A-1}+\frac{cosA}{cosecA+cotA-1} =1

L.H.S.

= \frac{sin A}{Sec A+tan A-1}+\frac{cosA}{cosecA+cotA-1}

= \frac{sinA}{\frac{1}{cosA}+\frac{sinA}{cosA}-1}+\frac{cosA}{\frac{1}{sinA}+\frac{cosA}{sinA}-1 }       [secA=\frac{1}{cosA}, tanA= \frac{sinA}{cosA},cosecA=\frac{1}{sinA},cotA=\frac{cosA}{sinA}]

= \frac{sinA}{\frac{1+sinA}{cosA}-1 } +\frac{cosA}{\frac{1+cosA}{sinA}-1 }

= \frac{sinA}{\frac{1+sinA-cosA}{cosA} } +\frac{cosA}{\frac{1+cosA-sinA}{sinA} }

= \frac{sinAcosA}{1+sinA-cosA} +\frac{cosAsinA}{1+cosA-sinA}

= sinAcosA[\frac{1}{1+sinA-cosA} +\frac{1}{1+cosA-sinA}]

= sinAcosA[\frac{(1+cosA-sinA)+(1+sinA-cosA)}{(1+cosA-sinA)(1+sinA-cosA)}]

= sinAcosA[\frac{2}{[1+cosA-sinA][1-(sina-cosA)]} ]

= \frac{2sinAcosA}{[1+cosA-sinA][1-(sina-cosA)]}

= \frac{2sinAcosA}{1^2-(sinA-cosA)^2}

= \frac{2sinAcosA}{1-(sin^2A-2sinAcosA+cos^2AcosA)}       [sin^2A+cos^2A=1]

= \frac{2sinAcosA}{1-(1-2sinAcosA)}

= \frac{2sinAcosA}{1-1+2sinAcosA}

= \frac{2sinAcosA}{2sinAcosA}

= 1

= R.H.S.

Hence proved.

Similar questions