prove that sin A ×secA ×root of cosec square A-1 =1
Answers
Answered by
10
Hi ,
SinA secA × √( cosec² A - 1 ) = 1
LHS = sinAsecA (√cosec² A - 1 )
= sinA / cosA [ √ cot² A ]
[ Since 1 ) secA = 1/cosA
2 ) cosec² A - 1 = cot² A ]
= tan A cotA
= 1
[ Since tanAcotA = 1 ]
= RHS
I hope this helps you.
: )
SinA secA × √( cosec² A - 1 ) = 1
LHS = sinAsecA (√cosec² A - 1 )
= sinA / cosA [ √ cot² A ]
[ Since 1 ) secA = 1/cosA
2 ) cosec² A - 1 = cot² A ]
= tan A cotA
= 1
[ Since tanAcotA = 1 ]
= RHS
I hope this helps you.
: )
Answered by
6
heya..!!!
we know that:-
secA = 1/cosA
cosec²A - 1 = cot²A
cotA = 1/tanA
now,
sinA × secA × √(cosec² - 1)
= sin/cosA × √(cot²A)
[ (cosec²A - 1) = cot²A ]
= tanA × cotA
= tanA × 1/tanA
= 1
I HOPE ITS HELP YOU,
we know that:-
secA = 1/cosA
cosec²A - 1 = cot²A
cotA = 1/tanA
now,
sinA × secA × √(cosec² - 1)
= sin/cosA × √(cot²A)
[ (cosec²A - 1) = cot²A ]
= tanA × cotA
= tanA × 1/tanA
= 1
I HOPE ITS HELP YOU,
Similar questions