Math, asked by Khushigautam76131, 1 year ago

Prove that sin A tan A \ 1 - cos A = 1 + cos A

Answers

Answered by Leander21
1

Answer:

Step-by-step explanation:(sinA*sinA/cosA) /(1-cosA)

sin^2A/(cosA (1-cosA ))

(1-cos^2A)/ (cosA (1-cosA))

(1+cosA)(1-cosA) / (cosA (1-cosA))

(1+cosA)/cosA

(1/cosA)+(cosA/cosA)

secA+1

1+secA proved

Answered by kaushik05
5

Answer:

 \frac{ \sin( \alpha )  \tan( \alpha ) }{1 -  \cos( \alpha ) }  \\  =  >   \frac{ \sin( \alpha ) \frac{ \sin( \alpha ) ) }{ \ \cos ( \alpha ) }  }{1 -  \cos( \alpha ) } \\  =  >   \frac{ { \sin ^{2} ( \alpha ) } }{ \cos( \alpha ) (1 -  \cos( \alpha ) )} \\  =  >  \frac{1 -  { \cos ^{2} ( \alpha ) } }{ \cos( \alpha )(1 -  \cos( \alpha ))  }  \\  =  >  \frac{(1 +  \cos( \alpha ))(1 -  \cos( \alpha ) ) }{ \cos( \alpha ) (1 -  \cos( \alpha )) } \\  \\  here \: (1 -  \cos( \alpha ) ) \: is \: cancel \: \\  =  > (1 +  \cos( \alpha ) ) \times  \sec( \alpha )

IN RHS WE HAVE TO PROVE

1+COS@ SEC@ OR sec@+1

Formula used :

1/cos@=sec@

tan@=sin@/cos@

HOPE THIS HELPS YOU☺️☺️

Similar questions